柯西(Cauchy)收敛准则

当一个数列的极限不是很容易求出来时,那么首要任务就是判断其极限是否存在,只有肯定了极限的存在后,再设法计算其极限。因此柯西收敛准则的重要性不言而喻。

对于这个定理的推导,课本上用到致密性定理,又是看了能看懂,但是自己看之前想不到的感觉,因此记录一下自己的思路。

致密性定理:任一有界数列必有收敛的子序列。

要看数列是否收敛,首先想到有界,这是很自然的,因为如果没有界,则肯定不是收敛的了。但是他怎么就和有界数列的子序列联系起来了呢?致密性定理是柯西收敛准则总结出来就有的吗?柯西也用这个定理来完成他的推理了?

虽然致密性定理相对来说比较简单,而且我的课本上,致密性定理也是在柯西收敛准则之前的。换句话说,当我学完致密性定理后,开始看课本上的柯西收敛准则,然后我在琢磨怎么推导柯西收敛准则时,压根就没有把他和致密性定理想到一块。

我推导过程没有用致密性定理,用了极限的定义和确界定义,似乎也没有漏洞。废话少说,学习笔记如下:

柯西(Cauchy)收敛准则:

数列[tex]\{a_n\}[/tex]有极限 [tex]\Leftrightarrow \forall \varepsilon>0, \exists N \in \mathbf{N}, \forall m,n>N[/tex], 有[tex] \vert x_n - x_m \vert < \varepsilon [/tex]

必要性[tex] \Rightarrow [/tex]: 设[tex] \lim_{x_n \rightarrow \infty} = a [/tex], 则[tex] \forall \varepsilon > 0, \exists N \in \mathbf{N}, \forall k>N [/tex]时,有:

[tex] \vert x_k - a \vert < \frac{\varepsilon}{2} [/tex]

从而可以得到,[tex] \forall m,n>N [/tex],有:

[tex] \vert x_n - x_m \vert = \vert x_n-a+a-x_m \vert \leq \vert x_n-a \vert + \vert a-x_m \vert < \varepsilon [/tex]

有了前面 极限唯一性 和 极限的保序性 的学习,必要性的证明过程再简单不过了。

充分性,既:由[tex] \forall \varepsilon > 0, \exists N \in \mathbf{N}, m,n>N, \vert x_n - x_m \vert < \varepsilon [/tex]得出数列收敛的结论。要看极限是否存在,首先想到判别是否有界,这是很容易想到的了。

当给定一个[tex] \varepsilon [/tex]后,N的值也就确定了,而m,n都是大于N的。由于[tex] \vert x_n-x_m \vert = \vert x_m - x_n \vert [/tex], 因此接下来只讨论[tex]n>m[/tex]的情况就可以了。既然N确定了,不管它有多大,始终都是一个有限值,从有限项[tex] \{\vert x_0 \vert, \vert x_1 \vert, \cdots \vert x_N \vert\} [/tex]取一个最大值都是可以的。于是:记[tex] X=max{ \{\vert x_0 \vert, \vert x_1 \vert, \cdots \vert x_N \vert\}\}[/tex], 而对于这个数列后面可能有无限项,于是是否有界的问题就转化成考察位于N之后的无限项是否有界。由于:

[tex] \vert x_n - x_m \vert < \varepsilon, \forall n>N[/tex], 恒成立,因此取m=N+1,n>m这样做的目的是把每一项都考虑进来,然后考虑那一项最大或最小。由于前面已经考虑了前N项,所以现在从N+1项开始考察。由代数的不等式规则有:

[tex] |x_n| \leq |x_n - x_{N+1}| + |x_{N+1}| < \varepsilon + |x_{N+1}|[/tex]

这就意味着,后面所有的项目都比[tex]|x_{N+1}| + \varepsilon[/tex]要小。于是,界线问题就只需要考虑:[tex] \{X, |x_{N+1}| + \varepsilon\}[/tex]了,对于任意给定的[tex]\varepsilon[/tex],只要[tex]\varepsilon[/tex],那么N以及[tex]|x_{N+1}| + \varepsilon}[/tex]都是可以计算出来的。因此数列有界。

这里课本上假设[tex] \varepsilon = 1 [/tex],然后3,5行就证明出来了,我根据自己的思路在这扯了一通。其实设为任何值都是可以的。

确定有界了,但是有界不一定有极限啊,例如[tex] \{ (-1)^n\}[/tex]有界,但不收敛。然后课本用致密性定理证明了它是有极限的。在看答案之前,我的确想不到。经过了痛苦的挣扎后,我首先想到的是,单调有界数列必有极限。又挣扎之后,我发现根据[tex] \forall \varepsilon>0, \exists N \in \mathbf{N}, \forall m,n>N  \vert x_n - x_m \vert < \varepsilon [/tex]

来证明它是单调的,这对我来说似乎很难啊。于是之后,我很自然的想到了有界的定义。主要是第二点:

[tex]\forall \varepsilon > 0, \exists |x_{n0}| \in \{ |x_n| \},  a-\varepsilon < |x_{n0}| [/tex]

这里还是都加个绝对值符号,考虑是上界的情况吧,下界的道理是一样的,不妨设上确界为|a|。

显然,设[tex]|x_k|[/tex]是[tex]\{|x_n|\}[/tex]中最大的,则有:

[tex] \forall \varepsilon > 0, |a|-\frac{\varepsilon}{2}< |x_k| \Rightarrow |x_k|-|a| < \frac{\varepsilon}{2}[/tex] 

[tex] \forall m \in \mathbf{N}, |x_m| \leq |x_k| [/tex]

由此有:

1. [tex] |x_m| - |a| < \frac{\varepsilon}{2} \because |x_m| \leq |x_k|  [/tex]

由已知:

2. [tex] |x_n| - |x_m| \leq |x_n-x_m| < \frac{\varepsilon}{2} [/tex]

把1和2相加,有:

[tex] |x_n|-|x_m|+|x_m|-|a| < \varepsilon} => |x_n|-|a| < \varepsilon[/tex]

有代数不等式规则有:

[tex] |x_n|-|a| \leq |x_n-a| < \varepsilon[/tex]

从而得到,此数列收敛于[tex]|a|[/tex]。

注意:先睡觉吧!改天再扯!

Posted by 独孤求真 2010年9月28日 06:08